REASONS FOR SEASONS

Name:_____

warmer

Rotates day revolve sun 365 year 24 Northern Winter Tilt

southern hemisphere summer Polaris circle colder 23.5

	Winter	summer	solstice	equinox	axis	elliptica			
Planet Earth		once ar	ound its ax	is every _		_ hours	. We ca	II this pe	riod of
time a		There are		days	in a	1		. It take	s one
year for the Earth to	o		once aroui	nd the			If I am		
years old [enter you	ır own ag	e], then I h	ave made			trip	s around	d the sun	during
my life.									
Earth's orbit around	the sun	traces out a	n almost p	erfect			. Thus	the dista	nce
between the sun an	ıd Earth d	oes not cha	inge very r	nuch over	the co	urse of a	a year. S	So the re	ason
that temperatures a	ire		in the sum	nmer and _			_ in the \	winter is	the tilt o
Earth's rotation axis	. Earth's	seasons ar	e NOT cau	sed by bei	ng clos	er or far	ther fro	m the sur	٦.
Earth's rotational ax	is is tilted	l	degre	es toward	a dista	nt star o	called		
(The North Star). A	s Earth m	noves arour	nd the sun,	Earth's No	orth Po	le stays	pointed	toward t	his star,
which is 500 light-ye	ears from	our solar s	ystem. Ea	rth's axis r	emains	tilted to	oward Po	olaris, bu	t how
Earth is leaning rela	tive to th	e Sun chan	ges as Earl	th moves in	n its or	bit arou	nd the S	un.	
When Earth is locate	ed on one	e side of the	Sun, the	tilt causes	the no	rthern h	emisphe	ere to be	leaning
toward the sun. Wh	nen earth	is on the o	pposite sid	e of the su	ın, this	same _		to	owards
Polaris causes the N	lorthern H	Hemisphere	to be lean	ing away f	rom th	e sun. \	When th	e norther	'n
hemisphere is leanii	ng toward	ls the sun,	the season	is		in	the		
hemisphere and wir	nter in the	southern h	nemisphere	e. When th	ne nort	hern he	misphere	e is leanir	ng away
from the sun, the se	eason is _			in the	e north	ern			
and summer in the				nemisphere	2.				

When we are leaning away from the sun, as in the season of	, the sun appears
[higher/lower] in the sky. This means the sun will spend	
[less/more] time above the horizons (rising later and setting e	earlier), and thus
there will be fewer daylight hours and less time to warm the Earth. The day of the	e year with the
[least/most] daylight hours is December 21st, the first day	y of winter (in the
Northern Hemisphere). This day is also called the winter solstice.	
When we are leaning toward the sun, as in the season of, the	e sun appears
[higher/lower] in the sky. This means the sun will spend	
[less/more] time above the horizons (rising earlier and setting	later), and thus
there will be more daylight hours and more time to warm the Earth. It is also true	e, that when the
sun is higher in the sky, the sun's rays impact earth at a steeper angle and are	
[less/more] intense than when the sun is lower in the sky. This also	so helps to explain
why it is warmer in summer and colder in winter. The day of the year with the	
[least/most] daylight hours is June 21st, the first day of summer	(in the northern
hemisphere). This day is also called the summer	
When earth is neither leaning towards nor away from the sun, we have the fall and	d spring
, when daylight and nighttime hours are about equal.	
For Earth, the following phrase is a way to remember the reason for colder and wa	armer seasons:
"Length of days; angle of ray; nothing to do with how far away". But, what about	the seasons on
Mars? Mars' rotational is tilted about the same amount as the Ear	rth's , but the orbit
of mars around the sun is more (like an oval). Thus Mars' of	distance from the
sun varies a lot more than Earth's distance from the sun. This means that both the	e tilt of the Mars.
Rotation axis and its closer and farther distances from the sun are important to con	nsider in
determining the more extreme natures of Martian seasons.	